A Comparative Study of Field Programmable Gate Array Error Cross Sections: Putting Data into Perspective

Melanie Berg

MEI Technologies Incorporated NASA/GSFC Radiation Effects and Analysis Group

Sponsors:

- NASA Electronic Parts and Packaging (NEPP) Program and
- Defense Threat Reduction Agency under IACRO# 06-4012I

Outline

- Radiation Effects and Analysis Group (REAG) Low Cost Digital Tester
- Differentiating FPGAs
- Radiation Test Development
 - Antifuse FPGA Testing and Results
 - SRAM FPGA Testing and Results
- Expanding Evaluation Criteria
 - Limitations of Bit Error Rate Calculators
 - SET Performance Degradation Metric
 - Availability Calculation

NASA-GSFC Low Cost Digital Tester (LCDT)

RS232 CONNECTION

HIGH-SPEED USB CONNECTION

Page 3

Just Some of Our Success Stories

- Maxwell SDRAM
- Actel RTSX & RTAX
- SRAM & SDRAM (for NSWC Crane)
- DRAM (for NRL)
- LSI Arithmetic Logic Unit
- Micron and Samsung Flash Devices
- Aeroflex Eclipse
- Boeing HBD Test Chip
- Xilinx SPARTAN III
- Xilinx Virtex 4 (LX and FX)
- Samsung and MICRON 1G High-Speed DDR2 SDRAM
- TI ADC

FPGA Characterization: Understanding the Differences to Develop an Efficient Test Suite

General FPGA Architecture

Configuration: A Major Difference between FPGA Classes

FPGAs contain groups of preexisting logic

Configuration:

- Arrangement of preexisting logic
- **Defines Functionality**
- **Defines Connectivity**

Common types

- One time configurable
- Re-configurable

CONFIGURATION TYPES

One Time

Antifuse

Re-Configurable Configurable

SRAM -Based

Antifuse FPGA Devices (Actel and Aeroflex)

- Pros:
 - Most common FPGA devices utilized for space missions heritage
 - Configuration is fused (no transistors) and is thus "HARDEND" – not affected by SEUs
 - Logic has embedded mitigation at each DFF (either TMR or DICE) – eases the design phase

Cons:

- One time programmable
 can complicate the design/debug phase
- Very expensive

RCELL in hardened Actel devices

SRAM Based FPGAs (Xilinx)

- Reconfigurable configuration is stored in internal SRAM.
- Configuration is soft (sensitive to SEUs and MBUs)
- Logic is also sensitive and contains no embedded mitigation
 - Based on radiation test data and project requirements, the mission will decide what level of mitigation to implement
 - Mitigation logic must be added by the designer

Why Use SRAM-Based FPGA's?

Pros:

- The ability to reconfigure a function while in-flight is of great advantage to many missions
- Device is Less expensive
- Easier to debug/correct (with no mitigation)
- Performance:
 - Speed
 - Increased User Device Resources

Cons:

- Configuration is SRAM-based increased sensitivity to radiation (vs. antifuse)
- Additional design complexity necessary for mitigation
- Additional hardware necessary for (re)configuration

Radiation Testing

Goal: Investigate Radiation Effects and Fault Analysis

- Determine Bit sensitivity
 - Flip Flops
 - Configuration (SRAM based technology)
- Availability analysis
 - Given a function to implement what is the percentage of time the output is correct vs. incorrect
 - Determine an availability rating that considers
 - Operational Frequency
 - Fluence
 - Repair time
 - Burst time

What Function to Implement for Testing?

Simple Architecture

- No functional Masking
- Easy to base-line across FPGAs
- Reduces Test time
- increases state space coverage

Complex Architecture

- Functional Masking
- Minimal state
 space coverage
 (short test runs –
 reset upon error)
- Only significant for specific design

Actual flight Architecture

- Usually not available at test time
- Can be very expensive to test
- Can not cover a significant amount of state space while testing
- Usually have to start from scratch at every error event

Testing Anti-fuse Devices

- No extra mitigation is required during testing (most space missions do not add mitigation to antifuse implementations)
- Check for frequency dependency
 - Test across a wide range of frequencies: varying combinatorial logic chains assists in analysis
 - Push design...Static Timing Analysis 10% critical path margin
- Analyze data pattern effects
 - Static vs. dynamic
 - Switching rate
 - Value
- Monitor fuse reliability
- Monitor potential latch-up
- Monitor potential speed degradation
- Tester must capture data every cycle:
 - have the ability to determine bursts
 - Time stamp every error

Calculating Error Cross Sections

Traditional

\(\sim \frac{Events}{Fluence}\)

error calculation

- TF: Total Effective Fluence
 - TB: Time in Burst
 - Flux: particles/second

Error calculation: Bursts within data

TF - (TB * FLUX)

- Analysis of event frequency
- •cross-section fed to error rate calculator: based off of a cumulative distribution probability function (P(T>t))
- ·We are not analyzing how long we are in error

Data Pattern Effects: Actel @ 150MHz

- •700 8F8L: 700 DFFs with 8 inverters (8L)
- •800 0F0L: 800 DFFs with 0 inverters
- •8000 0F0L: 8000 DFFs with 0 inverters

Clock Frequency Effects 54MeV*cm²/mg:

Frequency (MHz)

Error Cross-Section Results Prove for Antifuse Devices...

- Static testing is not sufficient
- Static simulation is not sufficient
- Assumptions of frequency response can not automatically be made
 - Actel produced expected (traditional) response
 - Aeroflex unexpected... combinatorial logic acts as transient filter

REAG Testing of Xilinx SRAM-Based FPGAs.

Xilinx Radiation Testing: Goals

- Analysis of user implemented mitigation strategies:
 - Evaluate cross sections with and without scrubbing
 - External Scrubbing
 - Internal self scrubbing
 - Evaluate cross sections with and without XTMR
- Monitor frequency Effects
- Monitor Data Pattern Effects
- Error Cross Section Calculations
- Determine function Availability

Scrubbing Facts

- Scrubbing is a form of error correction for Configuration memory
- Scrubbing does not reduce the probability of an upset occurring
- Scrubbing can reduce the amount of time the upset is present in the configuration memory
- The system is fully operational.
- Unable to scrub everything

REAG Investigation of Scrubbing:

- No scrubbing scrub machine is turned off
- Internal Scrubbing (Xilinx proprietary)
 - Instantiate Xilinx Cores
 - Core has ability to write and read configuration memory
- REAG External Scrubbing
 - Utilizes SelectMap Interface: 30 MHz 8bit parallel mode
 - Requires alternate devices
 - Tester + memory in our case
 - Hardened FPGA + memory within a mission
 - Writes Frame independent of error states (does not require read-back)
 - Tester uses readback for analysis purposes (via separate USB interface)

2 Architectures

- 6 strings of windowed shift registers
 - 2 strings @ N=0
 - 2 strings @ N=8
 - 2 strings @ N=20
 - Implemented with 300 and 80 DFF length strings
- TMR'd version of 6 windowed shift registers
 - Each string containing 80 DFFs
 - Could not implement triplicated version of 300 DFFs in Xilinx V4-LX25

Non-TMR Windowed Architecture

N levels of logic between DFFS ... 2 strings each; N = 0, 8, and 20

Long string of '0's or '1's:

We use alternating data inputs to achieve accurate cross-sections

Error Cross Section Calculation: Dealing with Bursts

$$\sigma \cong \frac{NE}{TFL - (TB * FLUX)}$$

LET: MeV*cm²/mg

- Cross-section based off of functional upsets (shift register)
- Count burst as one error event
- Burst can potentially mask faults
 - could have a much higher frequency of events
 - just masked by burst
 - Will be further investigated by fault injection

Limitations with Error Cross Sections as sole Evaluation Criteria

Frequency Effect Analysis and Successful Operations per second:

DUTA:@100MHz over 1E07 fluence: no bursts 10 errors

DUTB:@ 50MHz over 1E07 fluence: no bursts 5 errors

 $\mathbf{OA} = 2^* \mathbf{OB}$; Assumes constant error rate per frequency

Common Interpretation: Cross Section increases with Frequency – Decrease Clock Rate for Critical Missions

- However, B has to run twice as long as A to complete the same number of successful operations.
- Illustrates that per number of completed operations, each has the same probability to accumulate an equivalent number of errors

In this case:Slower Clock does not influence errors per successful operation

Limitations with Error Cross Sections as sole Evaluation Criteria (Continued)

- Burst Analysis:
 - Cross section probability calculation is based off of Event frequency (not event duration).
 - Cross section does not consider burst or repair time (availability)

Bit Error Rate Misconceptions:

Given a Bit Error rate of 5e-08, what does this mean???

AntiFuse

- Bit Error Rate is based on DFFs
- Number of DFFs will be from a few hundred to 10's of thousands
- Comes out to about 1 error every 10,000 days or better

SRAM

- Generally pertains to configuration bit rate
- If for example 1e7 bits can affect the design upon upset then can have 1 upset every 2 days

SET Performance Degradation Metric:

Performance Degradation per NMOPS

= C* Percentage of Downtime

- Can be used to compare functional performance across FPGA manufacturers
- Includes bursts/repair time (ECi)

- NMOPS: Number of Millions of operations per second
- F*k: operational frequency * number of operations per cycle
- ECi: Number of clock cycles of error per event i
 - TotCyc: Total number of operational clock cycles during irradiation
 - Acc: Acceleration Factor

Percentage of downtime

$$\approx \frac{N_{MOPS}}{fk} * \frac{1.0}{Acc} * (\sum_{i=1}^{n} \frac{ECi}{TotCyc})$$

Performance Degradation per 100MOPS: 8 LET MeV*cm²/mg

	F*K	ECi/TotCyc	Degradation
RTAX	150MHz*2000	1.2*10 ⁻⁹	(1.0/AccR)*4.0*10 ⁻¹³
Aeroflex	100MHz*140	8.77e- ¹¹	(1.0/AccA)*6.0*10-13
Xilinx	100MHz*1800	1.2e ⁻³	(1.0/AccX)*6.0*10 ⁻⁷

Degradation Measurement: We want the number to be low

Conservative: See Ed Peterson 1998 TNS

Availability

MTTF

A =

MTTR + MTTF

A = 1 is a perfect system

A: Steady State Availability

LET = 8MeV*cm2/mg	MTTR	MTTF	A steady State
RTAX @150MHz	6.67*10 ⁻⁹	3.6*10 ⁶ *AccR	(3.6*10 ⁶ *AccR)/ (6.67*10 ⁻⁹ + 3.6*10 ⁶ *AccR)
Aeroflex @ 100MHz	10-8	6.0*10 ⁵ *AccA	(6.0*10 ⁵ *AccA)/ (10 ⁻⁸ + 6.0*10 ⁵ *AccA)
Xilinx @ 100MHz	1.6*10 ⁻²	41*AccX	(41*AccX)/ (1.6*10 ⁻² + 41*AccX)

Mission Device Selection

- Xilinx showed a relatively low availability rating at 100MHz.
 - If used at full rate, may achieve much higher operations per second.
 - Higher MOPS can include scheduled downtime and may be a great fit
- Criticality and reliability play a major role in device selection
 - Missions have traditionally chosen antifuse devices for critical specifications.
 - Actel has been in the forefront
 - Aeroflex is very promising with its combinatorial transient filitering.
 - For less critical functionality, SRAM devices are being heavily investigated

Summary

- Differences between FPGA types strongly influence test beds
- Sensitivity calculations must be provided to missions to assist in the selection process.
 - Test to determine additional mitigation schemes required per FPGA
 - Bit Error calculations
 - Availability and degradation analysis
- Formulae have been presented:
 - Adjust Bit error calculations due to long bursts
 - SET Performance degradation Metric
 - Availability
- FPGA will be chosen by mission based on mission specifications:
 - Reliability
 - Availability
 - Cost
 - Successful Operations per second

Summary (Continued)

- Example was provided: Testing the SRAM-Based Xilinx Device
 - SRAM-Based Device will need some level of configuration memory error correction
 - Error correction categorization
 - Partial reconfiguration
 - Scrubbing
 - REAG compared 3 modes of scrubbing
 - No scrubbing
 - Internal scrubbing
 - External scrubbing
 - Test Results proved external scrubbing has the best performance
 - Information can be misleading...Further investigation must be taken on reporting analysis data.

Thank You Questions?